Search results for "Biomedical systems"

showing 4 items of 4 documents

Identification of Replicator Mutator models

2006

The complexity of biology literally calls for quantitative tools in order to support and validate biologists intuition and traditional qualitative descriptions. In this paper, the Replicator-Mutator models for Evolutionary Dynamics are validated/invalidated in a worst-case deterministic setting. These models analyze the DNA and RNA evolution or describe the population dynamics of viruses and bacteria. We identify the Fitness and the Replication Probability parameters of a genetic sequences, subject to a set of stringent constraints to have physical meaning and to guarantee positiveness. The conditional central estimate is determined in order to validate/invalidate the model. The effectivene…

education.field_of_studyTheoretical computer sciencePopulationGenomicsPositive systemsBioinformaticsSet (abstract data type)Identification (information)virus populationsModels of DNA evolutionReplication (statistics)VirusesRNA VirusesEvolutionary dynamicseducationBiomedical systems; Evolutionary dynamics; Nonlinear systems; Positive systems; Uncertain dynamical systems;
researchProduct

Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction

2017

[ES] Este trabajo propone la detección de FV y su discriminación de TV y otros ritmos cardiacos basándose en la representación tiempo-frecuencia del ECG y su conversión en imágen como entrada a un clasificador de vecinos más cercanos (KNN) sin necesidad de extracción de parámetros adicionales. Tres variantes de datos de entrada al clasificador son evaluados. Los resultados clasifican la señal en cuatro clases diferentes: ’Normal’ para latidos con ritmo sinusal, ’FV’ para fibrilación ventricular, ’TV’ para taquicardia ventricular y ’Otros’ para el resto de ritmos. Los resultados para detección de FV mostraron 88,27% de sensibilidad y 98,22% de especificidad para la entrada de imágen equivale…

medicine.medical_specialtyBiomedical systemsGeneral Computer ScienceSeñales no estacionarias0206 medical engineeringTime-frequency representationClasificación02 engineering and technologyElectrocardiographic signalsVentricular tachycardiaNon-stationary signalsImage analysisAnálisis de imágenesInternal medicine0202 electrical engineering electronic engineering information engineeringmedicineSinus rhythmSistemas biomédicosbusiness.industrySeñales ElectrocardiográficasClassificationmedicine.disease020601 biomedical engineeringRepresentación tiempo-frecuenciaControl and Systems EngineeringSignal parameterVentricular fibrillationCardiology020201 artificial intelligence & image processingbusinessRevista Iberoamericana de Automática e Informática industrial
researchProduct

Detection of Ventricular Fibrillation Using the Image from Time-Frequency Representation and Combined Classifiers without Feature Extraction

2018

Due the fact that the required therapy to treat Ventricular Fibrillation (V F) is aggressive (electric shock), the lack of a proper detection and recovering therapy could cause serious injuries to the patient or trigger a ventricular fibrillation, or even death. This work describes the development of an automatic diagnostic system for the detection of the occurrence of V F in real time by means of the time-frequency representation (T F R) image of the ECG. The main novelties are the use of the T F R image as input for a classification process, as well as the use of combined classifiers. The feature extraction stage is eliminated and, together with the use of specialized binary classifiers, …

ElectrodiagnòsticECG electrocardiogram signalsComputer science0206 medical engineeringFeature extraction02 engineering and technologycombined classification algorithmslcsh:TechnologyImage (mathematics)lcsh:ChemistryTime–frequency representationimage analysisvoting majority method classifiersnon-stationary signalstime-frequency representation0202 electrical engineering electronic engineering information engineeringmedicineGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrybiomedical systemslcsh:TProcess Chemistry and TechnologyGeneral EngineeringPattern recognitionmedicine.disease020601 biomedical engineeringlcsh:QC1-999Computer Science ApplicationsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Ventricular fibrillationEnginyeria biomèdica020201 artificial intelligence & image processingArtificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)hierarchical classifiersImatges Processament Tècniques digitalslcsh:PhysicsApplied Sciences
researchProduct

Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime

2005

We study the response time of a neuron in the transient regime of FitzHugh-Nagumo model, in the presence of a suprathreshold signal and noise sources. In the deterministic regime we find that the activation time of the neuron has a minimum as a function of the signal driving frequency. In the stochastic regime we consider two cases: (a) the fast variable of the model is noisy, and (b) the slow variable, that is the recovery variable, is subjected to fluctuations. In both cases we find two noise-induced effects, namely the resonant activation-like and the noise enhanced stability phenomena. The role of these noise-induced effects is analyzed. The first one produces suppression of noises, whi…

FitzHugh-Nagumo modelInfluence of noise sourceProc. SPIEFluctuations and Noise in Biological Biophysical and Biomedical Systems III
researchProduct